
Lab 1: Introduction
to Python

Data Structures and Algorithms for CL III
Oct 25 2019

Installation and setup

Installing the latest stable Python

● For this course we will use the latest stable version of Python 3

● On Linux, we can install this at the terminal with
○ sudo apt-get update
○ sudo apt-get install python3

● In general, on any system, go to
○ https://www.python.org/downloads/

● Once installed, you can run Python code directly in the Read-Eval-Print-Loop (REPL) in

the terminal with the command:
○ python3

● Or from a file with:
○ python3 path/to/my/script.py

● Or in editors and IDEs using the graphical user interface

https://www.python.org/downloads/

Installing a Python editor

● We suggest installing Visual Studio Code, which is a programming text editor
○ Features such as syntax highlighting, syntax checking and debugging for many languages including

Python
○ Relatively low overhead and multiplatform (Linux, Mac OS, Windows)

● You are welcome to use whatever you find most comfortable, from IDEs like Pycharm to

vim or emacs or (if you must, but please don’t) Notepad

● To install VS Code on your system, go to

https://code.visualstudio.com/docs/setup/setup-overview and follow the instructions for

your platform

● On Debian Linux systems like Ubuntu, we suggest downloading the .deb install package

and running:
○ sudo apt install ./<file>.deb

https://code.visualstudio.com/docs/setup/setup-overview

Getting VS Code in Python-shape

● Once you have VS Code running, install the following extension for Python

https://marketplace.visualstudio.com/items?itemName=ms-python.python

● Next, verify your Python installation (on Linux) with
○ python3 --version

● Finally, select the correct Python interpreter within VS Code through the Command

Palette (open this with Ctrl+Shift+P)
○ Start typing Python: Select Interpreter and then select the command
○ Choose your stable Python 3 version you just installed

https://marketplace.visualstudio.com/items?itemName=ms-python.python

Installing packages for Python

● Just as we import Java libraries, we will frequently need third party packages to get work

done in Python

● In general, you can use a program called pip to install packages
○ For example, to install the data science package numPy:

■ python3 -m pip install numpy

● However, Python packages are universally installed on the system unless otherwise

handled
○ This can cause version conflicts if different Python programs need different package versions to

run on the same system

● Therefore we encourage you to create a “virtual environment” in the directory with your

Python files, by the following commands:
○ python3 -m venv .venv
○ source .venv/bin/activate

Basics of Python

Key differences from Java: language features

● Interpreted vs. compiled
○ Java is a compiled language, which means the program semantics are checked by the compiler

before running
○ Python is interpreted, which means it is run line by line (permitting code changes while running,

though not advisable)

● Static vs. dynamic typing
○ In Java, we statically define types of variables: that is, int blah = 5; or string foo = “words”

■ We cannot arbitrarily later assign a string to an int
■ The compiler will know before runtime if you attempt to compare the two with > for

example
○ In Python, types are dynamically assigned by the interpreter: we simply write x = 5 or x = “words”

with no prefix
■ A variable x can change types by simply assigning a different value
■ Type incompatibility can frequently only be found at runtime

Key differences from Java: practical
preliminaries

● Statements
○ In Java, a statement ends in a semicolon, which lets you place them with arbitrary whitespace in

between
○ In Python, whitespace is very important and defines both statement endings (newlines) and scope

(indentation of lines)

● Printing strings to console
○ In Java, you would write System.out.print() or .println()
○ In Python, print() adds a newline to the end of each statement by default

■ To override this behavior, you can use print(“Hello”, end = “”) for example

● Comments
○ In Java, you use //normalcomment for single lines and /* this is a block comment */ for block

comments
○ In Python, it is #normalcomment for single lines and ‘’’ this is a block comment ‘’’

Key differences from Java: practical
preliminaries

● Printing values
○ In Python, string literals are encased in either single quotes or double quotes

■ No style preference but be consistent
○ You can print concatenated strings or string literals with +, not unlike Java

■ print(“Hello ”+”world”)
○ To print other types correctly, use a comma

■ print(“y=”, 5)

● To control whitespace in output, pass sep paramater to the print function
○ By default in Python, just as print() adds a newline, it also adds a space between values

concatenated with a comma, but we can override this
■ print(“y= “, 5, sep=””)

● Console input
○ To get console input in Java is a wordy multi-line affair
○ In Python, one can just make a call to built-in function input() to get a value from the console

■ y = input()

Key differences from Java: dealing with
strings

● Printing values
○ In Python, string literals are encased in either single quotes or double quotes

■ No style preference but be consistent
○ You can print concatenated strings or string literals with +, not unlike Java

■ print(“Hello ”+”world”)
○ To print other types correctly, use a comma

■ print(“y=”, 5)

● To control whitespace in output, pass sep paramater to the print function
○ By default in Python, just as print() adds a newline, it also adds a space between values

concatenated with a comma, but we can override this
■ print(“y= “, 5, sep=””)

● Console input
○ To get console input in Java is a wordy multi-line affair
○ In Python, one can just make a call to built-in function input() to get a value from the console

■ y = input()

Arithmetic operations

● Addition, substraction, multiplication, division
○ The first three are all the same
○ But division acts differently
○ In Java, the / is treated as integer division by default, so

■ 1 / 4 = 0
○ In Python, this is not the case

■ 1 / 4 = 0.25
○ Double // is used for integer division in Python

● Booleans are a subclass of int, meaning they are comparable
○ 1 == True, 0 == False

● Functions like min, max, etc. are built-in and do not require invoking a namespace like

Math.min() in Java

Sequences

● In Java, substrings were a somewhat messy affair -- in Python there is much more elegant

syntax

● A sequence in Python has a sophisticated set of associated methods for access and

manipulation
○ A string is also an (immutable) sequence (of characters)

● There are many kinds of sequences in Python, but for example, to initialize an empty list,

just write x = []
○ Or give it some initial values with x = [‘a’, ’b’, ‘c’, 4, ‘d’]

● We can take subsequences much more easily with the “slicing” syntax
○ x[n : k] returns a subsequence starting from index n and ending at index k (exclusive)
○ Leave a blank for n to start from the beginning or a blank for k to go to the end
○ So x[: 3] takes the first three elements, and x[3 :] starts from position 3 and goes to the end
○ Negative indices count from the end instead of the beginning -- for example, x[-3 :] takes the last

three elements

Lists, tuples, sets, ranges and strings

● Lists, tuples, strings, ranges and sets are all accessable with sequence syntax

● Lists (analogous to ArrayList objects in Java)
○ Initialized within [] brackets
○ Mutable
○ Any objects/values can be elements

● Tuples
○ Array-like, immutable, initialized like x = (z, y)
○ Any objects/values can be elements

● Sets
○ Unordered, mutable, initialized like x = {‘a’, ‘b’}
○ Hashable objects can be elements

● Strings
○ Immutable sequence of characters
○ Initialized x = “words”

● Ranges
○ Immutable, like strings for numbers, initialized like y = range(10)

Initial assignment 0.1 : Language guessing

● Go here to find the first assignment:
○ https://github.com/dsacl3-2019/a0.1

● We will discuss solutions on Nov 8th -- recall there is no class on Nov 1st!

https://github.com/dsacl3-2019/a0.1

Arithmetics

>>> 1 == 1

True

>>> 1 == 1.0

True

>>> 1 == int("1")

True

>>> 1 == float("1")

True

>>> # bool is a subclass of int

... 1 == True

True

>>> 0 == False

True

Arithmetics

>>> (1 + 2) * 3

9

>>> 4 ** 2

16

>>> 4 ** 0.5

2.0

>>> # float division is the default

... 5 / 3

1.6666666666666667

>>> 5 // 3

1

Sequences

>>> mylist = ['a', 'b', 3, 'd', 'e']

>>> mylist[0] # indexing

'a'

>>> mylist[4] == mylist[-1] == 'e'

True

>>> mylist[:2] # slicing

['a', 'b']

>>> mylist[-2:]

['d', 'e']

>>> mylist[1:4]

['b', 3, 'd']

>>> mylist[::2] # steps

['a', 3, 'e']

>>> mylist[::-1]

['e', 'd', 3, 'b', 'a']

Sequences

>>> mylist = ['a', 'b', 3, 'd', 'e']

>>> mylist + ['f', 'g']

['a', 'b', 3, 'd', 'e', 'f', 'g']

>>> mylist * 2

['a', 'b', 3, 'd', 'e', 'a', 'b', 3, 'd', 'e']

>>> 'b' in mylist

True

>>> 'c' not in mylist

True

>>> otherlist = [1, 1, 3, 3, 2, 4, 1]

>>> otherlist.count(3)

2

>>> otherlist.index(1) # first occurrence

0

>>> otherlist.index(1, 2) # first occurrence at/after index 2

6

>>> len(otherlist)

7

Sequences

>>> otherlist = [1, 1, 3, 3, 2, 4, 1]

>>> # for sequences of numbers

... sum(otherlist)

15

>>> min(otherlist)

1

>>> max(otherlist)

4

>>> nestedlist = [['a', 'b', 'c'], [1, 2, 3], 4]

>>> len(nestedlist)

3

>>> nestedlist[0]

['a', 'b', 'c']

>>> nestedlist[0][1]

'b'

Sequences

>>> l = ['a', 'b', 'c', 'd', 'e']

>>> for idx, elem in enumerate(l):

... '{} at index {}'.format(elem, idx)

...

'a at index 0'

'b at index 1'

'c at index 2'

'd at index 3'

'e at index 4'

>>> {elem: idx for idx, elem in enumerate(l)}

{'b': 1, 'e': 4, 'c': 2, 'd': 3, 'a': 0}

>>> l2 = ['v', 'w', 'x', 'y', 'z']

>>> {elem_l: elem_l2 for elem_l, elem_l2 in zip(l, l2)}

{'b': 'w', 'e': 'z', 'c': 'x', 'd': 'y', 'a': 'v'}

List

List: a mutable array

>>> mylist = ['a', 'b', 3, 'd', 'e']

>>> mylist[2] = 'c'

>>> mylist

['a', 'b', 'c', 'd', 'e']

>>> mylist += ['f', 'g']

>>> mylist.extend(['h', 'i'])

>>> mylist.append('j')

>>> mylist

['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']

>>> mylist.remove('c')

>>> mylist

['a', 'b', 'd', 'e', 'f', 'g', 'h', 'i', 'j']

>>> mylist.insert(2, 'c')

>>> mylist

['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']

List
List: a mutable array

>>> mylist = ['a', 'b', 3, 'd', 'e']

>>> elem = mylist.pop(2)

>>> "elem: {}, mylist: {}".format(elem, mylist)

"elem: 3, mylist: ['a', 'b', 'd', 'e']"

>>> elem = mylist.pop()

>>> "elem: {}, mylist: {}".format(elem, mylist)

"elem: e, mylist: ['a', 'b', 'd']"

>>> mylist.reverse()

>>> mylist

['d', 'b', 'a']

>>> mylist.sort()

>>> mylist

['a', 'b', 'd']

>>> mylist.clear()

>>> mylist

[]

Tuple
Tuple: an immutable array

I the general sequence operations also work for tuples

>>> mytuple = (1, 2, 3, 4)

>>> mytuple[-2:]

(3, 4)

>>> mytuple + (5, 6) # returns a new tuple

(1, 2, 3, 4, 5, 6)

>>> len(mytuple)

4

>>> 2 in mytuple

True

>>> # immutable!

... mytuple[0] = 2

Traceback (most recent call last):

File "<stdin>", line 2, in <module>

TypeError: 'tuple' object does not support item assignment

Range
Range: an immutable sequence of numbers

I the general sequence operations also work for ranges

I takes a small amount of memory that does not increase with
the length of the sequence

>>> myrange = range(10) # 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

>>> myrange[8]

8

>>> myrange[:-3]

range(0, 7)

>>> 7 in myrange

True

>>> tuple(myrange)

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

>>> list(range(1, 9)) # creating ranges is similar to slicing

[1, 2, 3, 4, 5, 6, 7, 8]

>>> list(range(1, 10, 2))

[1, 3, 5, 7, 9]

String

>>> 'g' in s

True

>>> 'ling' in s # subsequence testing

True

>>> 'computational {}!'.format(s)

'computational linguistics!'

>>> t = " I'm surrounded by whitespace \n"

>>> t.strip()

"I'm surrounded by whitespace"

>>> t.split() # default delimiter: whitespace

["I'm", 'surrounded', 'by', 'whitespace']

Set

Set: a mutable, unordered collection of hashable objects

I mutable containers (sets, dictionaries) are not hashable

>>> myset = {3, 2, 'a', 'b'}

>>> # collection operations

... 5 in myset

False

>>> len(myset)

4

>>> # set-theoretic operations

... mysubset = {2, 3}

>>> mysubset.issubset(myset)

True

>>> myset.intersection(mysubset)

{2, 3}

Frozenset

Frozenset: an immutable set

>>> myset = {3, 2, 'a', 'b'}

>>> myfrozenset = frozenset(['a', 'b', 2, 3])

>>> myset == myfrozenset # compares members

True

Dictionary

Dictionary: a mutable mapping from hashable objects to arbitrary
objects

>>> mydict = {'a': 1, 'b': 2, 'c': 3}

>>> mydict['a']

1

>>> mydict.items()

dict_items([('b', 2), ('c', 3), ('a', 1)])

>>> mydict.keys()

dict_keys(['b', 'c', 'a'])

>>> mydict.values()

dict_values([2, 3, 1])

>>> # can be used as a switch

... switchdict = {'sum': sum, 'len': len, 'min': min}

>>> switchdict['len'](mydict)

3

Comparisons
>>> 1 < 2 < 3

True

>>> True or 1/0 # lazy! no ZeroDivisionError

True

>>> not False and not None and not 0 \

... and not '' and not () and not [] and not {}

True

>>> l = [1, 2, 3]

>>> m = [1, 2, 3]

>>> # equality

... l == m

True

>>> # identity

>>> l is m

False

>>> l is not m

True

if, elif, else
not, and, or

Loops and List Comprehension

>>> squares = []

>>> for n in range(10):

... squares += [n * n]

...

>>> squares

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

>>> n # loops don't create a lexical scope!

9

>>>

>>> # as a one-liner (list comprehension)

... squares = [n * n for n in range(10)]

>>>

>>> some_squares = [x for x in squares if x % 3 == 0]

>>> some_squares

[0, 9, 36, 81]

Loops

>>> my_set = {'a', 'b', 'c', 'd', 'e'}

>>> while True:

... elem = my_set.pop() # removes a random member

... if elem == 'c':

... break

... print(elem)

...

a

>>> my_set

{'e', 'b', 'd'}

Iterators

>>> my_set = {'a', 'b', 'c', 'd', 'e'}

>>> it = iter(my_set)

>>> while True:

... try:

... print(next(it))

... except StopIteration:

... break

...

a

c

e

b

d

Functions

def count_vowels(s, vowels=('a', 'e', 'i', 'o', 'u')):

counts = {}

for vowel in vowels:

counts[vowel] = s.count(vowel)

return counts

or all in one line:

return {vowel: s.count(vowel) for vowel in vowels}

print(count_vowels('linguistics'))

{'u': 1, 'a': 0, 'o': 0, 'e': 0, 'i': 3}

built-in functions:
https://docs.python.org/3/library/functions.html

https://docs.python.org/3/library/functions.html

Functions

def my_function(arg1, arg2='default value', *args, **kwargs):

print('obligatory:', arg1)

print('optional:', arg2)

print('optional (positional):', args)

print('optional (with keyword):', kwargs)

my_function(0, 1, 2, 3, 4, five=5, six=6)

obligatory: 0

optional: 1

optional (positional): (2, 3, 4)

optional (with keyword): {'five': 5, 'six': 6}

my_function(0)

obligatory: 0

optional: default value

optional (positional): ()

optional (with keyword): {}

Functions

def my_function(arg1, arg2='default value', *args, **kwargs):

print('obligatory:', arg1)

print('optional:', arg2)

print('optional (positional):', args)

print('optional (with keyword):', kwargs)

my_list = [3, 4, 5]

my_function(0, *my_list) # unpacks the list

obligatory: 0

optional: 3

optional (positional): (4, 5)

optional (with keyword): {}

Functions
Avoid using mutable default arguments:

>>> def add(x, l=[]):

... l.append(x)

... return l

...

>>> add(1)

[1]

>>> add(2)

[1, 2]

>>> def add(x, l=None):

... if l is None:

... l = []

... l.append(x)

... return l

...

>>> add(1); add(2)

[1]

[2]

Functions

Functions can return multiple objects:

>>> def square_and_cube(x):

... return x**2, x**3

...

>>> n = 3

>>> s, c = square_and_cube(n)

>>> 'n: {}, s: {}, c: {}'.format(n, s, c)

'n: 3, s: 9, c: 27'

File I/O

f = open('file.txt', 'w', encoding='utf8')

f.write('Hi!')

f.close()

Using `with` closes the input stream automatically,

even if an exception is raised!

with open('file.txt', 'w', encoding='utf8') as f:

f.write('Hi!')

with open('file2.txt', 'r', encoding='utf8') as f:

for line in f:

print(line + '!')

with open('file2') as f:

list_of_lines = f.readlines()

https://docs.python.org/3/tutorial/inputoutput.html

https://docs.python.org/3/tutorial/inputoutput.html

